Differential Pressure Gauges with Capsule Element Model 716.11, Measuring System Cu-alloy Model 736.11, Measuring System Stainless Steel

WIKA Data Sheet PM 07.07

Applications

- Differential pressure measurement at measuring points with very low differential pressures, for gaseous, dry, clean, oil and grease free media
- Model 736.11 for aggressive media and environment also
- Filter monitoring in ventilation and heating systems
- Filter monitoring in overpressure and clean rooms
- Differential pressure controlled monitoring of ventilator and blast pressures

Special Features

- Differential pressure measuring ranges from 0 ... 4 mbar
- As a standard zero point adjustable in front
- Ingress protection IP 66
- Case made of stainless steel

Differential Pressure Gauge Model 716.11

Description

Design

For very low differential pressures, DT - GM 87 10 226

Nominal size in mm

Model 716.11: NS 63, 100, 160 Model 736.11: NS 100, 160

Accuracy class

1.6

Scale ranges

Model 716.11: NS 63: 0 ... 16 to 0 ... 400 mbar

NS 100: 0 ... 10 to 0 ... 250 mbar NS 160: 0 ... 4 to 0 ... 250 mbar

Model 736.11: NS 100: 0 ... 16 to 0 ... 250 mbar

NS 160: 0 ... 1,6 to 0 ... 250 mbar

or all other equivalent vacuum or combined pressure and

vacuum ranges

Pressure limitation

Steady: full scale value Fluctuating: 0.9 x full scale value

Overpressure safety

Full scale value

Max. working pressure (static pressure)

NS 63: 400 mbar NS 100, 160: 250 mbar

Operating temperature

Ambient: -20 ... +60 °C Medium: +70 °C maximum

Temperature effect

When the temperature of the measuring system deviates from the reference temperature (+20 °C):

max. ±0.5 %/10 K of full scale value

Ingress protection

IP 66 per EN 60 529 / IEC 529

WIKA Data Sheet PM 07.07 · 04/2010

Page 1 of 4

Design and operating principle

- Pressure retaining case with capsule measuring element,
 - $\boldsymbol{\oplus}$ pressure is retained in capsule element
 - ⊖ pressure is retained in case
- Pressure differential between j and i side deflects the capsule element
- The deflection is transmitted to the movement and indicated

Mounting according to affixed symbols, \oplus higher pressure and \ominus lower pressure

Mounting by means of:

- Rigid tailpipes
- Panel or surface mounting flange (option)
- Instrument bracket for wall or pipe mounting (option)

Standard version

Process connection (wetted)

Model 716.11: Cu-alloy Model 736.11: stainless steel

lower mount (LM), parallel one behind the other NS 63: $2 \times G \% B$ (male), 14 mm flats NS 100, 160: $2 \times G \% B$ (male), 22 mm flats

Pressure element (wetted)

Model 716.11: Cu-alloy Model 736.11: stainless steel

Movement (wetted)

Model 716.11: Cu-alloy Model 736.11: stainless steel

Dial (wetted)

Aluminium, white, black lettering

Pointer (wetted)

Aluminium, black

Zero adjustment (wetted)

Adjusting device for screwdriver in front

Case (wetted)

Stainless steel, pressure retaining, NS 100, 160: with pressure relief PUR

Window (wetted)

Clear non-splintering plastic

Sealings (wetted)

NBR, silicone

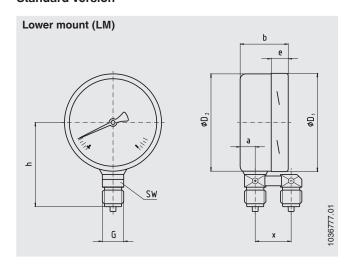
Bezel ring

Cam ring (bayonet type), stainless steel

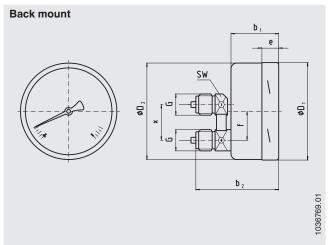
Options

- Other process connection
- Panel or surface mounting flange
- Instrument bracket for wall or pipe mounting (data sheet AC 09.07)
- Pressure equalising valve (data sheet AC 09.11) wetted
- Back mount

scale value


■ Overpressure safety
⊕ side with scale ranges 0 ... 1.6 to 0 ... 25 mbar: 3 x full

 $\geq 0 \dots 40$ mbar: up to the max. working pressure


O side: please inquire

Dimensions in mm

Standard version

Option

NS	Dimensions in mm												Weight
	а	b	b ₁	b ₂	D ₁	D_2	е	f	G	h ± 1	X	SW	in kg
63	11	48.5	38	55	64	62	13.5	20	2 x G ½ B 1)	49	23	14	0.23
100	15.5	48.5	49.5	84	101	99	17.5	30	2 x G ½ B	87	37	22	0.73
160	15.5	48.5	51.5	87	161	159	17.5	50	2 x G ½ B	118	37	22	1.33

Process connection per EN 837-3 /7.3.

¹⁾ Without spigot

Ordering information

Model / Nominal size / Scale range / Max. working pressure (static pressure) ... mbar / Connection size / Connection location / Options

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

Page 4 of 4

WIKA Data Sheet PM 07.07 · 04/2010

WIKA Alexander Wiegand SE & Co. KG

Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. (+49) 9372/132-0 Fax (+49) 9372/132-406 E-mail info@wika.de

www.wika.de