General Specifications

IR200 NDIR TYPE INFRARED GAS ANALYZER (4-COMPONENT ANALYZER)

GS 11G02M01-01E

The IR200 infrared gas analyzer is capable of measuring the concentrations of CO₂, CO, CH₄, SO₂, NO and O₂ components in sample gas.

 CO_2 , CO, CH_4 , SO_2 and NO are measured by nondispersive infrared method (NDIR), while O_2 is measured by paramagnetic or zirconia method. A maximum of 4 components including O_2 (up to 3 components except for O_2 measurement) are simultaneously measurable.

A high-sensitivity mass flow sensor is adopted in the detection unit for the infrared method. Due to use of single beam system for measurement, maintenance is easy and an excellent stability is ensured for a long period of time. In addition, the IR200 includes a microprocessor and has a large-size liquid crystal display, providing easy operation, high accuracy and multiple functions.

This analyzer is thus optimum for combustion control of various industrial furnaces, botanical study and global atmospheric research.

FEATURES

1. Simultaneous measurement of up to 4 components including O₂

 O_2 and 3 components selected from among CO_2, CO, CH_4, SO_2, and NO.

The analyzer receives signal input from an external oxygen analyzer and displays the measured value.

- Excellent long-term stability
 A unique optics system minimizes drift particularly due to contamination of measurement cell, ensuring excellent long-term stability.
- 3. Minimal interference from other gas components The dual cell type of transmission detector minimizes interference from other gas components.
- Low maintenance Single beam system allows for simple measurement unit construction and requires no adjustment of optical balance, resulting in low maintenance.
- 5. Easy operation

Large LCD provides easy interactive operation. 6. Extensive functions

Highly precise zero/span calibration is achieved by simply pressing calibration keys. Automatic calibration is also available.

Self-diagnostic function detects abnormality and displays an error massage.

Other functions include remote range switching, range identification signal output, output signal hold, and upper/lower limit alarm.

SPECIFICATIONS

Measurement principle:

CO ₂ , CO, CH ₄ , SO ₂ , NO	: Non-dispersive infrared method
	Single light source-single beam
O2:	Paramagnetic type (built-in), or
	zirconia type (external)

Measurable gas components and measuring ranges:

Range Component	Minimum range	Maximum range			
CO ₂	0 – 500 ppm	0 – 100 vol%			
CO	0 – 200 ppm	0 – 100 vol%			
CH4	0 – 1000 ppm	0 – 100 vol%			
SO ₂	0 – 500 ppm	0 – 5000 ppm 0 – 5000 ppm			
NO	0 – 500 ppm				
O ₂ (paramagnetic)	0 – 5 vol%	0 – 100 vol%			
O2 (zirconia)	0 – 5 vol%	0 – 25 vol%			
		T01.EPS			

• Measurement of up to 4 components including O₂.

- 1 or 2 measuring ranges per component.
- Measuring range ratio:
 - ≤1:5 (except built-in paramagnetic O₂ analyzer)
 - ≤1:20 (built-in paramagnetic O₂ analyzer)

For measurable components and possible combinations of measuring ranges, see pages 9 and 10.

Display: Digital, 4-digit LCD with CFL backlight

- Instantaneous value of each component
 Instantaneous value after O₂ correction (only in CO, SO₂, NO with O₂ measurement)
- Average value after O₂ correction (only in CO, SO₂, NO with O₂ measurement)
- Average O2 value

Analog output signal:

4 to 20 mA DC or 0 to 1 V DC, non-isolated,

8 points max.

Analog output corresponds one-to-one with measured value indication.

Permissible load resistance:

550 V max. for 4 to 20 mA DC 100 k Ω min. for 0 to 1 V DC *See Table 9 on page 11 for channel numbers of displayed values and analog output signals.

Analog input signal:

- For signal input from external O2 analyzer Signal requirement:
- (1) Signal from Yokogawa's zirconia O2 sensor
 (Model ZX8D Style C)
- (2) 0 to 1 V DC from an O2 sensor
 Input section is not isolated. This feature is when built-in O₂ sensor is not used.
- * External O2 sensor should be purchased separately.

Relay contact output:

- 1a contact (250 V AC/2 A, resistive load) Instrument error, calibration error, range identification, auto calibration status, solenoid valve drive for auto calibration, pump ON/FF.
- 1c contact (250 V AC/2 A, resistive load) Upper/lower alarm contact output.

Peak count alarm contact output.

* All relay contacts are isolated mutually and from the internal circuit.

Contact input: Non-voltage contact (ON/0 V, OFF/5 V DC, 5 mA flowing at ON) Remote range changeover, auto calibration remote start, remote hold, average value reset Isolated from the internal circuit with a photocoupler. Contact inputs are not isolated from one another. *Only M3.5 screw terminals are used for all signal inputs and outputs. Fordetails, see External Connection Diagram on page 14. Power supply: Voltage rating; 100 to 240 V AC Allowable range; 85 to 264 V AC Frequency; 50/60 Hz Power consumption; 70 VA max. Inlet: Conform to EN60320 Protection Class 1 Operating conditions: Ambient temperature: -5 to 45°C Ambient humidity; 90% RH max., non-condensing Storage conditions: Ambient temperature; -20 to 60°C Ambient humidity; 90% RH max., non-condensing Dimensions ($H \times W \times D$): 19-inch rack mounting type; 177 imes 483 imes 493 mm (500 max.) Weight: Approx. 10 kg Finish color: Front panel; Off-white (Munsell 10Y7.5/ 0.5 or equivalent) Steel-blue Casing; Enclosure: Steel casing, for indoor use Material of gas-contacting parts: Gas inlet/outlet; SUS304

Sample cell; SUS304/neoprene rubber Infrared-ray transmitting window; CaF2 Internal tubing; Toaron tube Gas inlet/outlet: Rc1/4 or 1/4NPT internal thread Purge gas flow rate: 1 L/min (when required) Installation altitude: 2000 m or less Safety and EMC conforming standards: Safety; EN61010-1 Pollution degree; 2 Installation category; II EMC; EN61326: EN61000-3-2 EN61000-3-3 **Standard Functions** Output signal hold: Output signals are held during manual and auto calibrations by activation of holding (turning on its setting). The values to be held are the ones just before start calibration mode. Indication values will not be held. Remote output hold: Output signal is held at the latest value by short-circuiting the remote output holding input terminals. Holding is maintained while the terminals are short-circuited. Indication values will not be held. Remote range changeover: Measuring range can be changed according to an external signal when remote range changeover input is received. Changeover is effective only when remote range setting is turned on. In this case, measuring range cannot be changed manually. When the contact input terminals for each component are short-circuited, the first range is selected, and it is changed over to the second range when the terminals are open. Range identification signal: The present measuring range is identified by a contact signal. The contact output terminals for each component are short-circuited when the first range is selected, and when the second range is selected, the terminals are open. Auto calibration:

ation: Auto calibration is carried out periodically at the preset cycle. When a standard gas cylinder for calibration and a solenoid valve for opening/ closing the gas flow line are prepared externally by the customer, calibration will be carried out with the solenoid valve drive contacts for zero calibration and each span calibration turned on/off sequentially at the set auto calibration timing.

Auto calibra	tion cycle setting:	Optional Functions
	Auto calibration cycle is set.	O2 correction: Conversion of me
	Setting is variable within 1 to 99 hours	gas concentratior
	(in increments of 1 hour) or 1 to 40 days	O ₂ concentration.
Can flow tim	(in increments of 1 day).	
Gas flow tim	The time for flowing each calibration gas in	Correction form
	auto calibration is set.	
	Settable within 60 to 599 seconds (in	Where:
	increments of 1 second)	C:Sample gas co
Auto calibratio	on remote start:	correction
	Auto calibration is carried out only once	Cs: Measured co
	according to an external input signal.	Os: Measured O ₂
	Calibration sequence is settable in the	On:Reference O
	same way as the cyclic auto calibration.	changeable b
	Calibration starts by opening the auto	* The upper limit
	calibration remote start input terminals	in this calculation The result of ca
	after short-circuiting for 1.5 seconds or longer. Auto calibration is started when the	
	contacts open.	output in an ana Average value after O ₂ correctio
Auto zero cali	•	calculation: The result of O ₂ contection
	Auto zero calibration is carried out	neous O ₂ value c
	periodically at the preset cycle.	average value in
	This cycle is independent of "Auto	time.
	calibration" cycle.	Used for averaging
	When zero calibration gas and solenoid	method in which
	valve for opening/closing the calibration	intervals of 30 se
	gas flow line are prepared externally by the	(Output is update
	customer, zero calibration will be carried out with the solenoid valve drive contact	the average value
	for zero calibration turned on/off at the set	of time just befor Averaging time is
	auto zero calibration timing.	minutes (in incre
Auto zero ca	alibration cycle setting:	4 hours (in incre
	Auto zero calibration cycle is set.	Average value reset:
	Setting is variable within 1 to 99 hours (in	The above-menti
	increments of 1 hour) or 1 to 40 days (in	value is started fi
	increments of 1 day).	opening the aver
Gas flow tim		terminals after sh
	The time for flowing zero gas in auto zero calibration is set.	seconds or longe
	Settable 60 to 599 seconds (in increments	Output is reset by restarted by oper
	of 1 second)	CO concentration peak count ala
Upper/lower li	,	(available only fo
	Alarm contact output turns on when the	Alarm output turr
	preset upper or lower limit alarm value is	preset concentra
	reached.	Whenever the ins
	Contacts close when the instantaneous	exceeds the pres
	value of each component becomes larger	count increments
	than the upper alarm limit value or smaller	preset value in o
Instrument or	than the lower alarm limit value.	contacts close.
instrument en	ror contact output: Contacts close at occurrence of analyzer	Communication function: RS-232C (9 pins
	error No. 1, 3 or 10.	Half-duplex bit se
Calibration er	ror contact output:	Start-stop synchr
	Contacts close at occurrence of manual or	Modbus [™] protoc
	auto calibration error (any of errors No.4 to	Contents: Read/
	9).	Read r
Auto calibratio	on status contact output:	concer
	Contacts close during auto calibration.	status
Pump ON/OF	F contact output:	Remark: When
	During measurement, contacts close. While calibration gas is flowing, contacts	interfac
	open. Contacts are connected in power	conver
	supply of pump, and stop the sample gas	
	while calibration gas is flowing.	
	5 5	

easured CO, SO2 and NO ns into values at reference

Correction formula:
$$C = \frac{21 - O_n}{21 - O_s} \times C_s$$

oncentration after O2 ncentration of sample gas concentration concentration (value by setting) value of the fractional part on is 4. alculation is indicated and alog output signal. n and O2 average value correction or instantaan be output as an the determined period of ng is the moving average sampling is carried out at conds. ed every 30 seconds. It is e in the determined period e the latest updating.) s settable within 1 to 59 ments of 1 minute) or 1 to ments of 1 hour). ioned output of average rom the initial state by age value resetting input nort-circuiting for 1.5 er. y short-circuiting and ning. arm: or $CO + O_2$ measurement) ns on according to the tion and count. stantaneous value of CO set concentration value, s. If the count exceeds the ne hour, the alarm D-sub) erial ronization ol write parameters measurement ntration and instrument connecting via RS-485 ce, a RS-232C ÷ RS-485 rter should be used.

Performance

Repeatability:	±0.5% of full scale
Linearity:	±1% of full scale
Zero drift:	±2% of full scale/week
Span drift:	±2% of full scale/week
Response time	e (for 90% FS response):
1 or 2 com	ponent measurement;
	Within 15 seconds including replacement
	time of sample gas
More than 2	2 component measurement;
	Within 30 seconds including replacement
	time of sample gas

Interference from other gases:

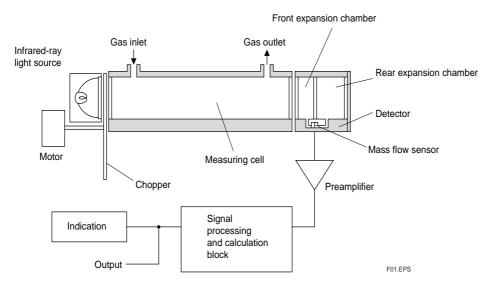
Interference component	CO2 analyzer	CO analyzer	CH4 analyzer	SO ₂ analyzer	NO analyzer	Built-in paramagnetic O2 analyzer
CO 1000 ppm	\leq 1%FS	—	\leq 1%FS	≦ 1%FS	\leq 1%FS	_
CO2 15%			≦ 1%FS	≦ 1%FS	≦ 1%FS	\leq 2% FS
H ₂ O saturation at 20°C	≦ 1%FS	$ \begin{array}{l} \leq 1\% FS \\ (\begin{array}{c} \text{for 500 ppm} \\ \text{analyzer,} \\ \leq 2.5\% FS \end{array} \end{array} $	≦ 1%FS	_	_	_
H ₂ O saturation at 2°C		\leq 2.5%FS (for 200 ppm) analyzer	_		≦ 60ppm * ≦ 2%FS with inter- ference compen- sation	_
CH4 1000 ppm	\leq 1%FS	\leq 1%FS	—	≦ 50ppm	—	_

*The H₂O interference of NO and SO₂ analyzer can be reduced by the interference compensation.

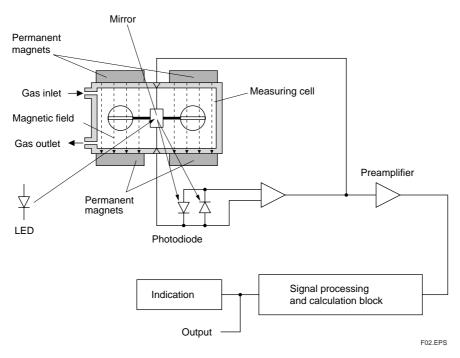
Standard Requirements for Sample Gas

etandal a lite	quiremente fer euripie eue
Flow rate:	1 L/min ±0.5 L/min
Temperature:	0 to 50°C
Pressure:	10 kPa or less (Gas outlet side should be
	open to the atmospheric air.)
Dust:	100 μ g/Nm ³ or less in particle size of 0.3 μ m or less
Mist:	Unallowable
men	
Moisture:	Below a level where saturation occurs at
	room temperature (condensation
	unallowable).
	Below the level where saturation occurs at
	2°C for CO measurement in 0 to 200 ppm
	range, NO measurement, and SO ₂
	measurement.
Corrosive com	ponent: HCl 1 ppm or less
Standard gas f	for calibration:
_	Zero gas; Dry N ₂
	Span gas; Each sample gas having
	concentration 90 to 100%FS of
	its measuring range
	(recommended).
	Gas beyond concentration
	100%FS is unusable.
	In case a zirconia O2 analyzer is installed
	externally and calibration is carried out on
	the same calibration gas line:
	Zero gas; Dry air or atmospheric air

(provided without CO2 sensor)

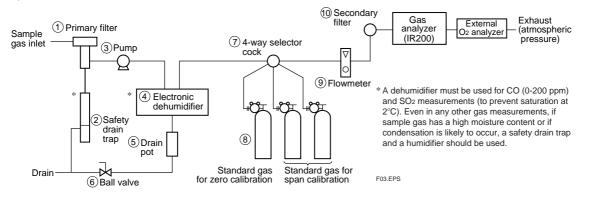

Span gas; For other than O₂ measurement, each sample gas having concentration 90 to 100% of its measuring range For O₂ measurement, O₂ gas of 1 to 2 vol% It is understood that a large quantity of hydrogen, helium, or argon in sample gas affects the calibration model of an infrared gas analyzer (pressure broadening). When measuring such sample gas, use a gas which has

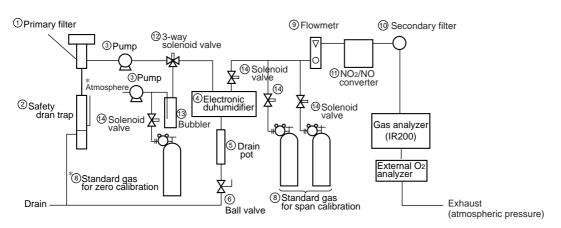
similar composition to the sample gas as a span gas.


Installation Requirements

- Indoor use: Avoid exposure to direct sunlight, weather, and radiant heat from hot substances. Where exposure to such conditions are unavoidable, a protective hood or cover should be prepared.
- Minimal vibration
- A clean atmosphere

Diagram of measurement principle of infrared gas analyzer (CO₂, CO, CH₄, SO₂, NO)


Diagram of measurement principle of paramagnetic oxygen analyzer


Examples of sampling system configuration

Typical examples are shown below. The system configuration may vary depending on sample gas. Consult with Yokogawa.

Measurement of sample gas with low moisture content (room-temperature saturation level or below): CO, CO_2 and CH_4 measurement

Measurement of sample gas with high moisture content or NO, SO₂, or CO (0-200 ppm range) measurement

*A dehumidifier must be used for NO, SO₂, and CO (0-200 ppm) measurements (to prevent saturation at 2°C). Use either atmospheric air or cylinder gas as a zero calibration gas and supply it through a bubbler (humidifying) to reduce interference of water.

Typcal sampling system components

No.	Item	Description
1	Primary filter (mist filter)	Removes dust and mist.
2	Safety drain trap	Separates and dischages drain.
3	Pump	Sucks in sample gas.
4	Electronic dehumidifier	Ddhumidifies sample gas.
5	Drain pot	Cellcts discharged water from dehumidifier.
6	Ball valve	Used for discharging drain.
\bigcirc	4-way selector cock	Used for switching sampling and calibration lines.
8	Standard gas for calibration	Used for zero/span calibration.
9	Flowmeter	Adjust and monitors sample gas flow rate.
10	Secondary filter (membrane filter)	Removes fine dust.
1	NO ₂ /NO converter	Converter NO2 gas into NO gas.
12	3-way solenoid valve	Used for introducing humidified gas.
13	Bubbler	Humidifies calibration gas.
14	Solenoid valve	Used for switching sampling and calibration lines.

All Rights Reserved. Copyright © 2002, Yokogawa Electric Corporation

MODEL AND SUFFIX CODE

DEL AND	SUFFIX CODE	[Style: S3]
Model	Suffix code	Option code Description
IR200		Infrared gas analyzer 19-inch rack mounting type with slide rail
Measurable components (note 8)	-A -B -C -D -E -F -G -H -J -X -J -K -L	$\begin{array}{c} SO_{2} \\ CO \\ CO_{2} \\ CH_{4} \\ NO \\ CO_{2} + CO \\ CH_{4} + CO \\ CO_{2} + CH_{4} \\ CO_{2} + CH_{4} \\ CO_{2} + CO + CH_{4} \\ NO + SO_{2} \\ NO + CO \\ NO + SO_{2} + CO \end{array}$
O2 analyzer	N 1 2 3	Without O ₂ analyzer External zirconia type O ₂ sensor (purchase separately: ZX8D) External O ₂ analyzer (note 1) Built-in paramagnetic type O ₂ sensor
1st Compone 1st Range (note 2)	A B C D E F G H J K L M P Q R S T	$\begin{array}{c} 0-200 \text{ ppm (note 3)} \\ 0-500 \text{ ppm (note 4)} \\ 0-1000 \text{ ppm} \\ 0-2000 \text{ ppm} \\ 0-2500 \text{ ppm} \\ 0-5000 \text{ ppm} \\ 0-5000 \text{ ppm} \\ 0-1\% \\ 0-2\% \\ 0-3\% \\ 0-3\% \\ 0-5\% \\ 0-10\% \\ 0-20\% \\ 0-25\% \\ 0-40\% \\ 0-50\% \\ 0-50\% \\ 0-70\% \\ 0-100\% \end{array}$
1st Compone 2nd Range (note 2)	C D E F G H K L M P R T N	$\begin{array}{c} 0-500 \ \text{ppm} \\ 0-1000 \ \text{ppm} \\ 0-2000 \ \text{ppm} \\ 0-2500 \ \text{ppm} \\ 0-5500 \ \text{ppm} \\ 0-1\% \\ 0-2\% \\ 0-5\% \\ 0-5\% \\ 0-10\% \\ 0-20\% \\ 0-25\% \\ 0-25\% \\ 0-50\% \\ 0-100\% \\ \text{Not available} \end{array}$
2nd Compone 1st Range (note 2)	ent B C D E F G H J K L M P Q R S T N	0-500 ppm 0-1000 ppm 0-2000 ppm 0-2500 ppm 0-5000 ppm 0-1% 0-2% 0-3% 0-2% 0-3% 0-5% 0-10% 0-20% 0-20% 0-25% 0-25% 0-40% 0-50% 0-70% 0-100% Not available

T04-1.EPS

MODEL AND SUFFIX CODE (Continued)

Model	Suffix code	Option code	Description				
IR200			Infrared gas analyzer 19-inch rack mounting type with slide r				
2nd Component 2nd Range (note 2)	C D E F G H K L M P R T N		0-1000 ppm 0-2000 ppm 0-2500 ppm 0-5000 ppm 0-1% 0-2% 0-2% 0-5% 0-10% 0-20% 0-20% 0-25% 0-50% 0-50% 0-100% Not available				
3rd Component 1st Range (note 2)	B C D E F G H J K L M P Q R S T N		0-500 ppm 0-1000 ppm 0-2000 ppm 0-2500 ppm 0-5000 ppm 0-1% 0-2% 0-2% 0-3% 0-3% 0-5% 0-10% 0-20% 0-20% 0-25% 0-40% 0-25% 0-40% 0-50% 0-70% 0-100% Not available				
3rd Component 2nd Range (note 2)	C D E F G H K L M P R T N		0-1000 ppm 0-2000 ppm 0-2500 ppm 0-5000 ppm 0-1% 0-2% 0-5% 0-5% 0-10% 0-20% 0-25% 0-50% 0-50% 0-100% Not available				
O2 Analyzer 1st Range (note 2)	1 2 3 4 5 N		0-5% 0-10% 0-25% 0-50% 0-100% Not available				
O2 Analyzer 2nd Range (note 2)	2 3 4 5 N		0-10% 0-25% 0-50% 0-100% Not available				
Output	-4 -1		4–20 mA DC, non-isolation 0–1 V DC, non-isolation				
Piping	R T		Rc 1/4 1/4 NPT				
Indication, Power Cable	(note 6) J E U		Japanese, Power Cable; rated voltage 125 V AC English, Power Cable; rated voltage 125 V AC (UL) English, Power Cable; rated voltage 250 V AC (CEE)				
Option	O ₂ Correction and O ₂ Average (note 5) Peak count alarm (note 5) Communication Internal Purge	/K /A /C /P	With O ₂ correction and O ₂ average value With peak count alarm (CO gas Only) RS-232C (note 7) Analyzer internal purging				

Footnotes:

1: A signal from the external O₂ analyzer should be 0-1 V DC linear to full scale. 2: Possible combinations of ranges are specified in separate tables.

- 3: Only available for CO measurement.
- 4: Only available for CO₂, CO, SO₂ or NO measurements.

5: O₂ correction is available only for CO, SO₂, and NO. Both average value output after O₂ correction and average O₂ value output are provided at the same time.

- A peak count alarm can be provided only for CO measurement.
- ${\it 6: Suffix Codes "E" and "U" are power cables with different voltage rating and plug type. Select}$
- appropriate code according to the operating power supply voltage to be used in the field.
- Suffix Code "E" is of the North American plug type and "U" of the European type.
- 7: Should be specified when using Modbus[™] communication.

8: For NOx measurement, a NO2/NO converter (P/N K9350LE or K9350LF) should be purchased separately.

Measurable components and ranges - availability check table -

Table 1. Single-component analyzer (CO₂, CO, CH₄, SO₂, NO)

\square	2nd range	В	С	D	E	F	G	Н	К	L	М	R	Т
1s	t range	0-500ppm	0-1000ppm	0-2000ppm	0-2500ppm	0-5000ppm	0-1%	0-2%	0-5%	0-10%	0-20%	0-50%	0-100%
А	0-200ppm	0	0		_	_	—	_	—		—		—
В	0-500ppm	—	⊗O□☆	©O□☆	©O□☆		—	—	—		—	_	_
С	0-1000ppm	_		©O∆⊡☆	©O∆⊡☆	©O∆⊡☆	—	—	—		—	_	_
D	0-2000ppm	—	_	—	©O∆⊡☆	©O∆⊡☆	©O∆	—	—	—	—	_	—
Е	0-2500ppm	_		—	_	©0∆⊡☆	©O∆	_	_	_		—	_
F	0-5000ppm	_		—	—		©O∆	©O∆	_		—	_	—
G	0-1%	—		—			—	©O∆	©O∆		—		—
Н	0-2%	—	_	—	—	_	_	_	©O∆	©O∆	—	—	—
J	0-3%			—	_			_	©O∆	©O∆		_	—
Κ	0-5%			—	_	_		_	_	©O∆	©O∆	_	—
L	0-10%	_		—	—		_	—	_		©O∆	©O∆	—
М	0-20%	_		—			_	_	—		—	©O∆	00
Ρ	0-25%	—	_	—	—		_	—	—	—		©O∆	00
Q	0-40%			_	_				_			©O∆	©O∆
R	0-50%	_		_	_	_	_		_	_		—	©O∆
S	0-70%	_	_	_	_		_	_	_	_			©O∆
Т	0-100%	_			—		_	_	_		_	_	©ΟΔ

©: CO₂ analyzer measurable range ☐: SO₂ analyzer measurable range ☆: NO analyzer measurable range

*Note:Single range is also available.

Table 2. Two-component analyzer (CO2 and CO)

	-		2nd com	2nd component (CO), 1st range CO											
1st component		В	С	D	Е	F	G	Н	к	L	М	Р	R	Т	
† (C)	J 2),	, 1st range	0-500ppm	0-1000ppm	0-2000ppm	0-2500ppm	0-5000ppm	0-1%	0-2%	0-5%	0-10%	0-20%	0-25%	0-50%	0-100%
	F	0-5000ppm	_	O	0	O	O	O	O	0	O	O	0	0	0
	G	0-1%	0	0	0	O	O	Ø	0	O	0	0	0	0	0
	Н	0-2%	0	0	0	O	O	O	0	O	0	0	0	0	0
CO2	к	0-5%	0	0	0	0	0	0	0	O	0	0	0	0	0
	L	0-10%	0	0	0	0	0	O	0	O	0	0	0	0	0
	М	0-20%	0	0	0	O	0	O	0	O	0	0	0	0	0
	R	0-50%	_	O	0	O	0	0	0	O	0	0	0	0	0
	Т	0-100%	_	0	0	0	0	0	0	0	0	0	0	0	0

O: Available as single range, O: 2 ranges of 2 and 2.5 times each range available

Table 3. Two-component analyzer (CH4 and CO)

	2nd component (CO), 1st range CO														
1st component		В	С	D	Е	F	G	Н	К	L	М	Р	R	Т	
↓(CH	4),	1st range	0-500ppm	0-1000ppm	0-2000ppm	0-2500ppm	0-5000ppm	0-1%	0-2%	0-5%	0-10%	0-20%	0-25%	0-50%	0-100%
	F	0-5000ppm	_	0	0	O	0	O	0	0	0	O	0	_	_
	G	0-1%	_	0	0	O	O	O	0	0	0	0	0	0	0
	н	0-2%	O	0	0	0	0	0	0	0	0	O	0	0	0
CH₄	к	0-5%	O	0	0	0	0	0	0	0	0	O	0	0	0
	L	0-10%	O	0	0	0	0	0	0	0	0	O	0	0	0
	М	0-20%	_	_	0	0	0	0	0	0	0	O	0	0	0
	R	0-50%	_	_	—	_	0	0	0	0	0	O	0	0	0
	т	0-100%	_	_	_	_		0	0	0	0	0	0	0	0
		Augilahia			2		5 timos og		veileble						T07.EPS

 \bigcirc : Available as single range, \bigcirc : 2 ranges of 2 and 2.5 times each range available

Table 4. Two-component analyzer (CO₂ and CH₄)

	<u> </u>		2nd com	ponent (Cl	-l₄), 1st ran	ge →		CH ₄						
1st component			С	D	E	F	G	H	К	L	М	Р	R	Т
†(CC) ₂)	,1st range	0 – 1000ppm	0 – 2000ppm	0 – 2500ppm	0 – 5000ppm	0 – 1%	0– 2%	0-5%	0 – 10%	0 – 20%	0 – 25%	0 - 50%	0 – 100%
	D	0 – 2000ppm				0	Ø	O	O	O				
	E	0 – 2500ppm				0	Ø	O	0	O				-
	F	0 to 5000ppm				0	O	O	0	0	O			_
	G	0 – 1%	O	0	0	0	Ø	Ø	0	0	O	0		
CO ₂	н	0 – 2%	O	0	0	0	O	O	0	0	O	0	0	_
	κ	0 – 5%	O	0	0	0	0	O	0	0	O	0	0	0
	L	0 – 10%	O	0	0	0	O	O	0	0	O	0	0	0
	М	0 – 20%	O	0	0	0	0	O	0	0	O	0	0	0
	R	0 – 50%		0	0	0	O	O	0	0	O	0	0	0
	Т	0 – 100%		0	0	0	0	0	0	0	0	0	0	0
<u> </u>														

○: Available as single range, ◎: 2 ranges of 2 and 2.5 times each range available

Table 5. Two-component analyzer (NO and SO₂)

2nd component (SO ₂), 1st range \longrightarrow SO ₂							
	1st component	В	С	D	E	F	
ļł	(NO),1st range	0-500ppm	0-1000ppm	0-2000ppm	0-2500ppm	0-5000ppm	
	B 0-500ppm	0	0	0	0	0	
	C 0-1000ppm	0	0	0	0	0	
NO	D 0-2000ppm	0	Ó	0	0	Ö	
	E 0-2500ppm	0	0	0	0	0	
	F 0-5000ppm	0	0	0	0	0	
						T05-1	

 \odot :Two components measurable range. 1st component ; NO, 2nd component ; SO₂

* 1st range (low range) must meet the combination in above table.

2nd range, both NO and SO2 measurements are up to 5 times of the 1st range, and 2nd max. range is 0 to 5000ppm.

Table 6. Two-component analyzer (NO and CO)

	2nd component (CO), 1st range → CO										
	st component	А	В	С	D	E	F	G			
I (N	IO),1st range	0-200ppm	0-500ppm	0-1000ppm	0-2000ppm	0 v2500ppm	0-5000ppm	0-1%			
	B 0-500ppm	0	0	Ó	Ó	0	0	0			
	C 0-1000ppm	0	0	0	0	0	0	0			
NO	D 0-2000ppm	0	0	0	0	0	0	0			
	E 0-2500ppm	0	0	0	0	0	0	0			
	F 0-5000ppm	—	0	0	0	0	0	0			
<u>.</u> т											

 \odot :Two components measurable range. 1st component ; NO, 2nd component ; CO

* 1st range (low range) must meet the combination in above table.

2nd range, both NO and CO measurements are up to 5 times of the 1st range.

2nd max. range of NO is 0 to 5000ppm. 2nd max. range of CO2 is 0 to 1%.

Table 7. Three-component analyzer (CO₂ + CO + CH₄ and NO + SO₂ + CO)

See Table 4 for CO₂ + CH₄ measurement of three-component analyzer (CO₂ + CO + CH₄) and Table 5 for NO + SO₂ measurement of three-component analyzer (NO + SO₂ + CO). See Table 1 for CO measurement.

Table 8. O2 analyzer

2nd range		2	3	4	5			
1st range		0-10%	0-25%	0-50%	0-100%			
1	0-5%	OΔ	OΔ	0	_			
2	0-10%	_	OΔ	0	0			
3	0-25%	—	—	0	0			
4	0-50%	_	_	—	0			
5	0-100%	_	_	_	0			
TO9,EPS								

○: Built-in O₂ analyzer measurable range,

 $\overline{\bigtriangleup}$: External zirconia type O₂ analyzer (in this case, Yokogawa's ZX8D Style C) measurable range

* O2 analyzer is selectable indifferently to combination with other components.

	Suffix/Opt	tion Code	Output and Corresponding Channel							
Measurable component	O ₂ analyzer	O2 correction	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	
- A	N	Not specified	SO ₂							
- B	N	Not specified	CO							
- C	N	Not specified	CO ₂							
- D	N	Not specified	CH4							
- E	N	Not specified	NO							
- F	N	Not specified	CO ₂	со						
- G	N	Not specified	CH4	со						
- H	N	Not specified	CO ₂	CH4						
- J	N	Not specified	CO ₂	со	CH4					
- K	N	Not specified	NO	SO ₂						
- L	N	Not specified	NO	со						
- M	N	Not specified	NO	SO ₂	со					
- A	1, 2, 3	Not specified	SO ₂	O2						
- B	1, 2, 3	Not specified	со	O2						
- C	1, 2, 3	Not specified	CO ₂	O2						
- D	1, 2, 3	Not specified	CH4	O2						
- E	1, 2, 3	Not specified	NO	O2						
- F	1, 2, 3	Not specified	CO ₂	со	O2					
- G	1, 2, 3	Not specified	CH4	со	O2					

CH₄

СО

SO₂

СО

SO₂

O₂

O₂

O₂

CO

CO

СО

SO₂

CO

SO₂

O₂

CH₄

O₂

O₂

CO

O₂

O₂

CH₄

O₂

O₂

СО

O₂

 Ω_2

O₂

O₂

O2 av.

O2 av.

O2 av.

O2 av.

O2 av.

Correct NOx Correct SO₂ Correct CO

O2 av.

O2 av.

O2 av.

O2 av.

Correct CO Correct CO av.

Correct NOx Correct SO2 Correct NOx av. Correct SO2 av.

Correct NOx Correct CO Correct NOx av. Correct CO av.

Correct CO Correct CO av.

Correct CO Correct CO av.

Correct SO2 Correct SO2 av.

Correct CO Correct CO av.

Correct NOx Correct NOx av.

Table 9. Measurable Components and Their Corresponding Channel Numbers

CO₂

CO₂

NO

NO

NO

SO₂

CO

NOx

CO₂

CH₄

CO₂

NOx

NOx

NOx

* How to Read the Table

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

Not specified

Not specified

Not specified

Not specified

Not specified

/K

/K

/K

/K

/K

/K

/K

/K

/K

- H

- J

- K

- L

- M

- A

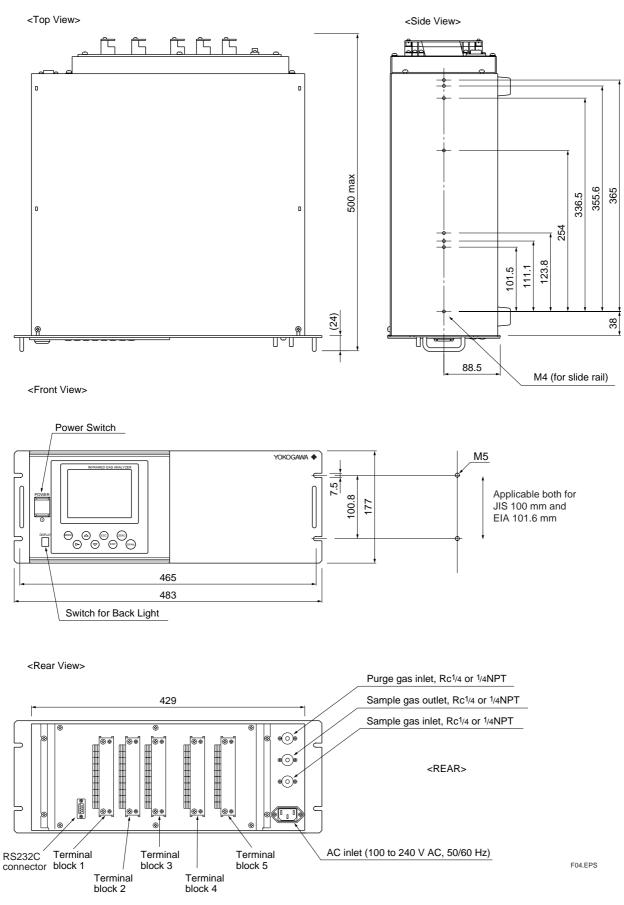
- B

- E

- F

- G

- J - K

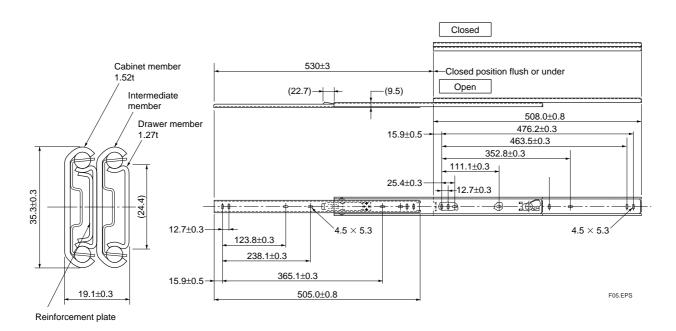

- L

- M

"SO₂" in the CH1 column means that the display and output of CH1 correspond to SO₂ component. "Correct XX" means an instantaneous XX value after O₂ correction, "Correct XX av." an average XX value after O₂ correction, and "O₂ av." an average O₂ value.

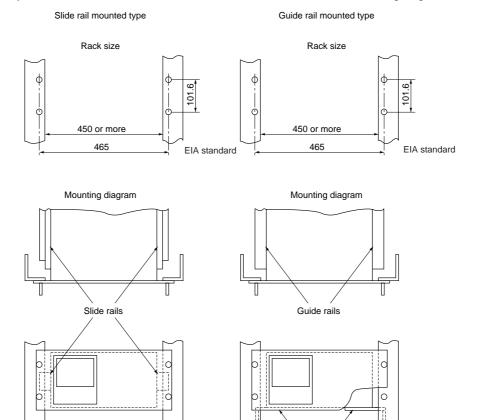
CH8

EXTERNAL DIMENSIONS



All Rights Reserved. Copyright © 2002, Yokogawa Electric Corporation

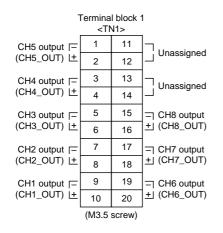
Unit: mm


EXTERNAL DIMENSIONS OF ACCESSORY SLIDE RAIL


Model: 305A-20/Accuride International Inc.

19-inch rack mounting method:

The instrument weight should be supported at the bottom of the unit (or the side of the unit when mounted with the slide rails). For easy maintenance, it is recommended to select the methed to allow withdrawing alog the slide rail.



F06.EPS

Unit: mm

All Rights Reserved. Copyright © 2002, Yokogawa Electric Corporation

Terminal block 3

<TN3>

11

12

13

14

15

16

17

18

19

20

(M3.5 screw)

☐ Instrument error

☐ CH4 range identification

CH3 range identification

CH2 range identification

☐ CH1 range identification

」 signal output (RNG_IDCH4)

signal output (RNG_IDCH3)

signal output (RNG_IDCH2)

」 signal output (RNG_IDCH1)

J (FAULT)

1

2

3

4

5

6

7

8

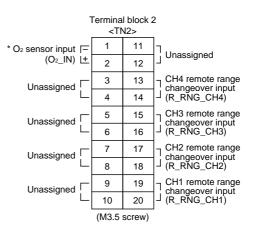
9

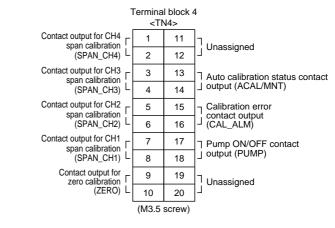
10

Unassigned

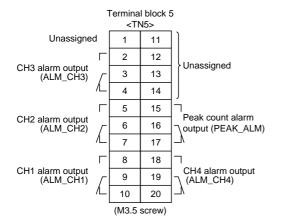
Unassigned

(R_HOLD)


input (RESET)


Auto calibration

input (R_CAL)


Remote hold input

Average value reset

F07.EPS

*O2 sensor input is used when an external O2 analyzer is selected.

Note: Unassigned terminals are used for internal connection. So they should not be used as repeating terminals either.

STANDARD ACCESSORIES

ltem	Part No.	Description	Qty
Power cable	K9218SA	Standard inlet type (2.5 m)	1
Fuse	K9218RB	Replacement fuse (250 V AC, 1 A, delay type) x1	2
Slide rail	K9218RC	Slide rail x1	2

Note: Quantity in this table is the number of accessories supplied as standard. For instance, two K9218RC parts, i.e., two slide rails, are supplied as standard.

When ordering separately, the required number of parts should be considered

Dedicated Zirconia O₂ Sensor (to be purchased separately)

For O₂ correction, the IR200 can accept linealized 0 to 1 V DC signal coming from an analyzer calibrated to 0 to 25% O₂ of full scale. Dedicated zirconia O₂ sensor, Model ZX8D, is available from Yokogawa.

Measuring method: Zirconia system

Measurable component and measuring range:

Measurable component	Minimum range	Maximum range
Oxygen (O2)	0-5 vol%	0-25 vol%
		T12.EPS

Repeatability:	Within ±0.5% of full scale						
Linearity:	Within $\pm 1\%$ of full scale						
Zero drift:	Within ±1% of full scale/week						
Span drift:	Within ±2% of full scale/week						
Response time: Approx. 20 seconds (for 90% response)							

Sample gas flow rate: 0.5 \pm 0.25 L/min

Note: The Zirconia system, due to its principle, may produce a measuring error depending on the relative concentration versus the combustible O₂ gas concentration. Also, a corrosive gas (SO₂ of 250 ppm or more, etc.) may affect the life of the sensor.

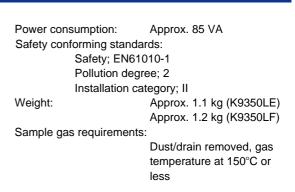
Gas inlet/outlet	size: Rc1/4						
	90 to 126 V AC or 200 to 240 V AC,						
. ener eapp.y.	50/60 Hz						
Enclosure:	Steel casing, for indoor application						
Indication:	Temperature indication (LED)						
Temperature a							
·	Contact output 1a contact,						
	Contact capacity 220 V AC, 1 A (resistive						
	load)						
Safety and EM	Safety and EMC conforming standards:						
	Safety; EN61010-1						
	Pollution degree; 2						
	Installation category; II						
	EMC; EN61326:						
	EN61000-3-2						
	EN61000-3-3						
Dimensions (H	x W x D): 140 $ imes$ 170 $ imes$ 190 mm						
Weight:	Approx. 3 kg						
Finish color:	Munsell 5Y 7/1						

ZX8D Dedicated zirconia O ₂ sensor Power -5 90-126 V AC, 50/60 Hz supply -3 200-240 V AC, 50/60 Hz Style code *C Style C (Non-CE conformity) *D Style D (CE conformity)	Model			Option code	Description
supply -3 200-240 V AC, 50/60 Hz Style code *C Style C (Non-CE conformity)	ZX8D				Dedicated zirconia O2 sensor
	Style co	de			Style C (Non-CE conformity) Style D (CE conformity)

External Dimensions of ZX8D

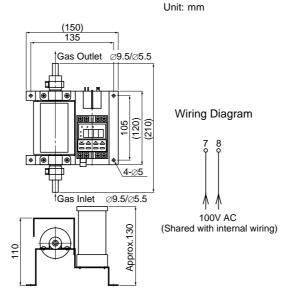
170 152 ∄ \mathbb{A} OXYGEN ANALYZER 800 TEMP 70000000 140 110 131 7-M4 (\mathbf{X}) \otimes FUSE3/ POWER ٢ ⊹ OFF AC L E LOUT LALM φ 0 Gas outlet 17 Gas inlet 172.3 ϕ_5 F08.EPS **External Connection Diagram**

2 3 5 7 1 4 6 ιΘ ٠ AC power supply 50/60Hz Output Е Temperature to IR200 alarm output F09.EPS

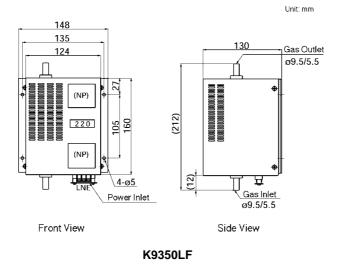

A Caution on Safety

Before using this product, be sure to read its instruction manual in advance.

NO₂/NO Converter


Part number: K9350LE (Non-CE conformity) K9350LF (CE conformity) Mounting: Indoor surface mounting Target gases: General boiler exhaust gas, atmosphere Catalyst: Amount; 2 cm³ Replacement cycle; Approx. 12 months (at flow rate of 0.3 L/min with 5% O2, 10 ppm NO) Temperature setpoint; 210 ±10°C (Sensing tip: K thermocouple) Wetted materials: Ceramic, Viton, glass filter, SUS316 Conversion efficiency: 90% or higher, conforms to JIS Gas flow rate: 0.5 L/min Ambient temperature: -5 to +45°C Power supply: 100 VAC, 50/60 Hz (K9350LE) 100 to 240 VAC, 50/60 Hz (K9350LF)

External Dimensions



One-year-Use Spare Parts

Item	Part No.	Qty
Catalyst for NO ₂ /NO converter	K9350LP	2
Glass wool for NO2/NO converter	K9350LQ	2
Fitting for NO2/NO converter	K9350LV	2
		T15 ens

K9350LE

Inquiry Sheet for IR200 Infrared Gas Analyzer

Place a checkmark 🗸 in the appropriate box and fill in the specific information in the blanks for your reference.

1.	General Information			
	Company :		Delivery destination :	
	· · · · · · · · · · · · · · · · · · ·			(Phone No.)
	Plant name :		Measurement location :	
	Purpose : 🗆 Indic	ation reading, 🗌 Recording, 🗌] Telemeter transmission, 🗆 Ala	$rm, \square Control, \square Other$
2.	Requirements			
	Measurable component:		O2 Analyzer:	
			□ Without O ₂ analyzer	
				sensor (use ZX8D Style C)
			 External O2 analyzer Built-in paramagnetic to 	$u_{ne} O_{2} sensor$
	$\Box CO_2 + CO$			
	□ CH₄ + CO			
	$\Box CO_2 + CH_4$			
	\square NO + SO ₂			
	□ NO + CO □ CO2 + CO + CH4			
	$\square NO + SO_2 + CO$			
	Range:			
	1st component, 1st range	1st component, 2nd range	2nd component, 1st range	2nd component, 2nd range
	□ 0 – 200 ppm	□ 0 – 500 ppm	□ 0 – 500ppm	□ 0 – 1000 ppm
	□ 0 – 500 ppm	□ 0 – 1000 ppm	□ 0 – 1000 ppm	□ 0 – 2000 ppm
	🗆 0 – 1000 ppm	□ 0 – 2000 ppm	□ 0 – 2000 ppm	□ 0 – 2500 ppm
	🗌 0 – 2000 ppm	🗌 0 – 2500 ppm	🗌 0 – 2500 ppm	🗌 0 – 5000 ppm
	🗌 0 – 2500 ppm	🗌 0 – 5000 ppm	🗆 0 – 5000 ppm	□ 0 – 1%
	🗌 0 – 5000 ppm	□ 0 – 1%	□ 0 – 1%	□ 0 – 2%
	□ 0 – 1%	□ 0 – 2%	□ 0 – 2%	□ 0 – 5%
	□ 0 – 2%	□ 0 – 5%	□ 0 – 3%	□ 0 – 10%
	□ 0 – 3%	□ 0 – 10%	□ 0 – 5%	□ 0 – 20%
	□ 0 – 5%	□ 0 – 20%	□ 0 – 10%	□ 0 – 25%
	□ 0 – 10%	□ 0 – 25%	□ 0 – 20%	□ 0 – 50%
	□ 0 – 20%	□ 0 - 50%	□ 0 – 25%	□ 0 − 100%
	□ 0 – 25%	□ 0 − 100%	□ 0 – 40%	Not available
	□ 0 - 40%	Not available	□ 0 - 50%	
	□ 0 – 50%		□ 0 – 70%	
	□ 0 – 70%		□ 0 – 100%	
	□ 0 – 100%		Not available	

3rd component, 1s	t range 3rd compor	nent, 2nd range O2	Analyzer, 1st range	O2 Analyzer, 2nd range
🗆 0 – 500 ppm	□ 0 − 1000	ppm 🗆 C	- 5%	□ 0 – 10%
🗌 0 – 1000 ppm	□ 0 – 2000] 0 − 2000 ppm		□ 0 – 25%
🗌 0 – 2000 ppm	□ 0 – 2500	□ 0 – 2500 ppm □ 0 – 25%		□ 0 – 50%
🗌 0 – 2500 ppm	□ 0 – 5000	□ 0 – 5000 ppm □ 0 – 50%		□ 0 – 100%
🗌 0 – 5000 ppm	□ 0 – 1%	□ 0 - 1% □ 0 - 100%		Not available
□ 0 – 1%	□ 0 – 2%	\Box 0 – 2% \Box Not available		
□ 0 – 2%	□ 0 – 5%			
□ 0 - 3%	□ 0 – 10%			
□ 0 - 5%	□ 0 – 20%			
□ 0 – 10%	□ 0 – 25%			
□ 0 - 20%	□ 0 – 50%			
□ 0 - 25%	□ 0 – 100%	6		
□ 0 - 40%	🗆 Not avail	able		
□ 0 – 50%				
□ 0 - 70%				
□ 0 − 100%				
Not available				
Output	: □ 4 – 20 r	mA DC □ 0 – 1 V D0	C □ RS-232C	
O ₂ Correction and O ₂ A				
Peak count alarm	: 🗆 Yes	□ No		
3. Sample gas condition	ns			
Fuel : 🗌 Gas, 🗌 Oil,		Other fuel		
(1) Temperature :	to		, Normal temperature	[°C]
(2) Pressure :	to		, Normal pressure	[MPa]

(1) Lemperature :	to		, Normal temperature	[°C]
(2) Pressure :	to		, Normal pressure	[MPa]
(3) Humidity :			[vol%]	
(4) Dust :			[mg/Nm³]	
(5) Corrosive gas:	□ Yes	_ □ No		

Composition (Detailed composition of sample gas should be provided. This is important for the purpose of knowing the effect of interference gases.)

Composition	Concentration range		
СО	to	□%	□ppm
CO ₂	to	□%	□ppm
CH4	to	□%	□ppm
H2	to	□%	□ppm
O2	to	□%	□ppm
N2	to	□%	□ppm
SO ₂	to	□%	□ppm
H ₂ O	to	□%	□ppm
NO	to	□%	□ppm
	to	□%	□ppm
	to	□%	□ppm

All Rights Reserved. Copyright © 2002, Yokogawa Electric Corporation

18